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Abstract
Rydberg atoms can be considered as mesoscopic systems at the interface
between quantum and classical behaviour. The interaction with the
surroundings (bath) becomes essential and leads to dephasing of the
wavefunction. An important process in Rydberg plasmas is the collision with
free charge carriers. Transition rates due to Coulomb interaction are considered
in the Born approximation and are shown to coincide with the dephasing time
according to linear response theory for mesoscopic devices. We point out that
this description of the dephasing process relies on weak coupling between the
Rydberg states and the bath and becomes invalid, if strong scattering is of
importance.

PACS numbers: 03.65.Yz, 34.60.+z, 34.80.−i, 34.80.Pa

1. Introduction

Rydberg atoms are highly excited atomic states, where the electron is only weakly bound
to the ion and its wavefunction extends over mesoscopic distances. Typical values for the
principal quantum number are n = 10, . . . , 100 so that the binding energy becomes lower
than room temperature down to the Kelvin range. As an example, for a value of n, l = 35 s
of a Rb Rydberg state [1], we have for the characteristic radius a value of n2aB ≈ 54 nm. The
ionization potential is ≈Ry/1000 ≈ 0.0136 eV, which equals a thermal energy at T ≈ 155 K.

These weakly bound states have interesting properties. According to their mesoscopic
extension, most of their properties can be obtained in a quasiclassical description. Investigating
such systems helps us to understand the transition from quantum to classical behaviour, which
is a general topic considered in open quantum systems [2, 3]. Different applications, in
particular quantum computing [4], are under discussion [5, 6]. Mesoscopic physics is a new
field of research which develops special concepts [7]. In particular, we are interested in the
dephasing time which characterizes the loss of quantum coherence. Meanwhile the latter is
one of the limits of applicability of such devices.

0305-4470/06/174587+08$30.00 © 2006 IOP Publishing Ltd Printed in the UK 4587

http://dx.doi.org/10.1088/0305-4470/39/17/S43
mailto:christian.gocke@uni-rostock.de
http://stacks.iop.org/JPhysA/39/4587


4588 C Gocke and G Röpke

The sensitivity to perturbers is a characteristic property of Rydberg atoms. The interaction
with the radiation field leads to the emission and absorption of radiation and, as a consequence,
to the width of the spectral lines corresponding to the transition rate. At finite densities, the
interaction with other particles (neutral as well as charged) may become more important for
the transition rates. Thus in a Rydberg gas consisting of many Rydberg atoms (e.g. in a
magneto-optical trap at very low temperatures T < 1 K [8, 9]) the dipole interaction among
Rydberg atoms separated at distance R is the most perturbing contribution. The interaction
potential of the latter can be introduced from resonance interaction (∼R−3) to van-der-Waals
attraction (∼R−6) with high rates due to the huge atomic matrix elements [8, 10].

If no external electrical field is applied, the Rydberg gas develops into an ultracold neutral
plasma (Rydberg plasma) where additionally free charge carriers (electrons, ions) are present
[11–13] and the Coulomb interaction provides the strongest coupling of Rydberg energy
levels which is responsible for the width of the spectral lines. The resulting broadening of
stationary states limits the number of excited states and transition lines that can be clearly
identified. However the line-broadening can be separated in a homogeneous part due to
collective dephasing and an inhomogeneous part that rather represents line-splitting due to
different levels that can be distinguished in a more detailed description. The latter can in
well chosen situations even be used to suppress dephasing [5] in order to prepare qubits in
mesoscopic ensembles, if the excitation laser bandwidth is small enough to resolve the splitting.
The time evolution of Rydberg plasmas has been studied in [14–18] where the collision rates
are mostly calculated classically. As the dominating radiation source the thermal field of
the apparatus that is at room temperature has been established. Collision processes from
free electrons and ions result in transitions among bound states as well as ionization and
recombination.

In this paper we will focus our considerations to transitions among bound states in the
presence of charged particles. For the given case, we examine the transition rates of Rydberg
atoms on a many-particle background and relate it to the dephasing time. On the background of
mesoscopic metal and semiconductor devices the dephasing time has been related to statistical
properties of both, the reduced system and the bath [7, 19]. This approach is very attractive in
a plasma environment because there the interesting statistical quantities as the dielectric
function and the dynamical structure factor are well investigated and can be calculated,
e.g., in linear response theory.

In this contribution we compare expressions known from plasma theory with results of
the mesoscopic description of dephasing. Limits of such a treatment if strong scattering is
considered are pointed out.

2. Electron scattering at Rydberg atoms

We now consider the Rydberg atoms in a cold, dilute electron–ion plasma that has been
studied in several experiments [11]. In the following we choose a typical setup of the plasma
with electron temperature T = 20 K and density ρe = 109 cm−3. A further characterizing
property of such a plasma is the plasma frequency, here ωpl =

√
ρee2/(ε0me) = 8.6 × 109 s−1.

The Coulomb coupling parameter is � = e2

4πε0kBT
(4πρe/3)1/3 = 0.135, and the degeneracy

parameter � = 2mekBT/h̄2(3π2ρe)
−2/3 = 5 × 105. Such a plasma can clearly be described

as non-degenerate.
Averaging over l and summing over l′, the transition rates for weak scattering can be

related to the rate coefficient knn′(T ), obtained by averaging the total cross section σnn′(Ee) of
an incident electron with energy Ee over the Maxwell–Boltzmann distribution, which holds
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Figure 1. Transition rates of n = 13 to near n′ states by T = 300 K electron plasma with density
ρe = 109 cm−3 for the BA with and without effect of strong collisions [20] comparing to He data
from [21] and classical trajectory MC calculation [22].

approximately for an ultracold plasma as long as one neglects the utmost regions [18],

Wnn′ = ρeknn′(T ) = ρe〈
√

(2Ee/me) σnn′(Ee)〉T . (1)

The total cross section can be expressed in terms of the Born approximation (BA),

σ
(BA)
nn′ (Ee) = 8πRy

Ee

∫ √
2me/h2(

√
Ee+

√
Ee−h̄ωnn′ )

√
2me/h2|√Ee−

√
Ee−h̄ωnn′ |

M2
nn′(q) dq

q3
, (2)

with transition frequency h̄ωnn′ = En′ − En = Ry (1/n2 − 1/(n′)2) and the atomic matrix
element M2

nn′(q) = n−2 ∑
lm,l′m′ |〈n′l′m′| exp(iq · r)|nlm〉|2. The modification due to strong

collision is taken into account by a reduction factor f (n,�n; θ) obtained in semiclassical
approximation [20],

knn′(T ) = 〈
√

2Ee/me σnn′(Ee)〉(BA)
T f (n,�n; θ),

(3)

f (n,�n; θ) =
ln

[
1 + 1

�nθ(1+2.5n/(�nθ))

]
ln

[
1 + 1

�nθ

] , θ =
√

|En|
kBT

.

Equation (3) is valid for excitation n′ − n = �n > 0. A corresponding formula holds for
deexcitation.

In figure 1 the transition rates from n = 13 to near n′ of the BA (H wavefunction) with
and without consideration of strong collisions are compared to an experiment on He atoms
[21] and classical trajectory Monte Carlo (CTMC) simulations [22]. The principle difference
between H and He atoms, the quantum defect of the He l = s, p levels, does not play a
considerable role for the n → n′ rates, because they have a low statistical weight due to small
degeneracy when summing over l′ (averaging over l).
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Figure 2. Radiative dipole transitions of n = 13, l = 1, 5, 10 to near n′, l′ = l ± 1 states at
T = 300 K thermal BBR.

As is well known, the BA strongly overestimates the part from strong collisions with
Ee < |En|. The comparison with the CTMC calculations shows that the measured rates
can be reasonably explained with classical calculations. Comparing classical and quantum
calculations, one should note that the quantum correspondence of the classical treatment are
wave packets describing localization in space. These can be represented by superpositions of
a set of atomic energy eigenstates with adequate quantum numbers n, l,m; see [23]. In the
present work we do not deal with wave packets as we consider atomic energy eigenstates with
given quantum numbers n, l,m, and sum or average over l′,m′ or l, m, respectively. A mixing
(superposition) of atomic eigenstates with different quantum numbers n, l,m occurs choosing
the appropriate initial and final states induced by the necessary treatment of strong collisions
and the introduction of the corresponding reduced density-matrix as discussed in section 4.

The process of electron scattering generally competes with radiative transitions due to
black-body radiation (BBR) of the environment, in particular the experimental apparatus.
This leads in dipole approximation to induced emission and absorption transition rates given
by [20, 24],

Wnl,n′l′ = 4π2

3

e2

4πε0h̄
2c

I (ωnn′)
max{l, l′}

2l + 1
|〈n′l′|r|nl〉|2, (4)

that represent the interaction of Rydberg levels with the thermal radiation (photon) field. The
intensity distribution I (ωnn′) for BBR is given by Planck’s formula [24] and the dipole matrix
elements can be calculated analytically for hydrogen. For high n alkali atoms the dipole matrix
elements can be calculated numerically [1]. The transition rates from n = 13 to near n′ for
l = 1, 5, 10, l′ = l ± 1 at room temperature T = 300 K for hydrogen are shown in figure 2.
It clearly shows that the largest rates arise at small �n. This is even more pronounced for the
higher l states though the effect is smaller. The summed rates give an overall lifetime that lies
in the order of several microseconds, which equals the n → n′ electron scattering transitions
at an electron density ρe ∼ 107 cm−3.
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Another process that needs to be mentioned here is the resonant dipole interaction, which
acts like a hopping process [10]. The interaction shows R−3 dependence and is proportional
to the density of Rydberg atoms in the involved states. Due to the huge dipole matrix element,
its strength compares to the processes discussed above. In a Rydberg gas, the disorder of
the Rydberg atom’s distances can be considered as a source of dephasing for a two-atom
superposition state, if at least one of the states is exposed to resonant dipole interaction. Its
contribution to the linewidth has been found to agree with the predicted 	ω ≈ (2π)−1Vµ for
the potential Vµ = (4πε0)

−1µ2R−3 and dipole matrix elements µ [8].
In general, all three processes mentioned are important for the time evolution of Rydberg

states in a many-particle environment. The situation we are especially interested in occurs
for parameter values, when the dominating process is due to collisions with charge carriers.
This is the case, e.g., for the electron densities ρe ∼ 109 cm−3 given above. In the following
sections, we restrict ourselves to transition rates by collisions with charged particles as can be
calculated by the cross section, equations (2), and (3). In particular we are interested in the
way how to take into account strong collisions appropriately and extend the BA.

3. Many-particle picture of bath scattering

To describe the interaction of the Rydberg atoms with a many-particle environment the
expressions of the last section are valid only, if one restricts oneself to the case of asymptotically
free scatterers. Generally it is necessary also to include the collective properties of the plasma
(e.g. plasmons). A possible approach offers the transversal dielectrical function which is
related to the polarisation function of the medium [25]. In its general form also effects of
bound states in the medium can be included [26].

Considering a probe atom within the medium, the total state can be assumed to factorize
to the form |
〉 = |nlm〉 ⊗ |φe〉. The transition rates in lowest order perturbation theory can
then be obtained from Fermi’s golden rule,

Wnn′ = 4e4

h̄2(4πε0)2�0

∫
dq
q4

∫ ∞

−∞
dω Se(q, ω)M2

nn′(q) δ(ω − ωnn′), (5)

with the definition of the dynamical structure factor (DSF) of the plasma electrons,

Se(q, ω) =
∑
φe,φ′

e

|〈φ′
e|nq|φe〉|2δ(ω + ωφeφ′

e
)Pφe . (6)

The DSF is a well-known quantity in linear response theory (LRT) containing the particle
density nq(r), the many-particle states |φe〉, and their statistical weight Pφe . From the
fluctuation–dissipation relation,

Se(q, ω) = h̄�0

π

1

eβh̄ω − 1

ε0q
2

e2
Im

{
ε−1

e (q, ω)
}
, (7)

the DSF can be calculated from the dielectric function, εe(q, ω) [27].
Using Im

{
ε−1

e (q, ω)
} ≈ −Im{εe(q, ω)}, which is valid far off the plasmon pole ω = ωpl,

and the dielectric function in its well-known random phase approximation within equation (7),
equation (5) reduces to exactly the same rates of the BA in equations (1), and (3).

In equation (5), however, additional many-particle effects originating from inter-electron
collisions can be included into the rates [28]. One obtains the rates for weak scattering of a
non-ideal electron gas at a Rydberg atom. The restriction to weak scattering that follows from
Fermi’s golden rule as a starting point for equation (5) ignores the effect of strong collisions.
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For comparison, in the similar situation of the theory of spectral line-shapes this restriction
belongs to the impact approximation in the BA. Strong collisions, on the other hand, are dealt
with by the ionic microfield concept and cut-off procedures [26, 29]. On the other hand, for
transitions among low H states the approach within LRT has been extended to the treatment
of strong collisions [30].

4. Dephasing rate and life time

The many-particle formulation of the last section is a special case of a system-background
picture known from the studies of open quantum systems [3]. Within these, one separates the
system of interest (S) that is coupled by an interaction potential VI to a heat bath (B) whose
microscopic states cannot be specified. The total Hamiltonian of such a system reads

H = HS + HB + VI. (8)

The time evolution of the system coupled to the bath is described by a statistical operator
ρ(t) according to the von-Neumann equation. Assuming that it can be decomposed as
ρ(t) = ρS(t) ⊗ ρB so that the correlations between the system (ρS(t)) and the bath (ρB, in
thermal equilibrium) can be neglected, the variables of the bath can be averaged out, so that
in lowest order with respect to the interaction VI a quantum-mechanical (Lindblad) master
equation [25, 31] is obtained. The general form of the dynamics can be written as

ih̄
∂

∂t
ρS(t) = [HS, ρS(t)] − i

2

∑
k

(
L+

kLkρS + ρSL
+
kLk − 2LkρSL

+
k

)
, (9)

with the Lindblad operators Lk acting in the Hilbert space of the system’s states.
The properties of the master equation, in particular the relation to the Pauli master equation,

has been discussed in the literature for the harmonic oscillator coupled to a bath of harmonic
oscillators. Especially the phenomenon of decoherence (i.e. the suppression of wavefunction
interferences) is investigated. In the picture of equation (9) decoherence is described by the
damping of the non-diagonal elements of the reduced density operator of the system (ρS(t))

represented in a basis where the interaction potential operator is diagonal [31]. The application
of a master equation of Lindblad type to Rydberg atoms is discussed recently in the treatment
of superradiance [32] and was derived for atomic properties in a optical dense medium in [33].

Closely related to this general treatment of open quantum systems, the dephasing of a
quantum subsystem has been studied in mesoscopic devices that are of the scale like Rydberg
atoms [7]. For a statistical system that has a very high quantum uncertainty it was shown [19]
that any transition due to the dynamical system–bath interaction randomizes the phase of the
system so that the total transition rate can be taken as a measure of dephasing. In this case the
dephasing time τφ can be estimated by the formula obtained in using LRT [7],

1

τφ

= 1

h̄2(2π)2�0

∫
dq

∫ ∞

−∞
dω |Vq |2SS(−q,−ω)SB(q, ω). (10)

Both the system and the bath enter equation (10) by their DSF. If we assume the system to be a
single, (with respect to the bath) isolated Rydberg atom, the DSF of the system can be expressed
in terms of the atomic matrix elements, SS(−q,−ω) = ∑

αn′ |Mαn′(q)|2δ(ωαn′ − ω)Pα . With
the sum over α and Pα the initial preparation of the quantum-mechanical state (which has to
be assumed metastable in this statistical formulation) enters into the DSF. It generally arises
from the experimental setup. Using SB(q, ω) = Se(q, ω) and setting Pα = δnα , however, we
arrive again at equation (5).
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Therefore, the determination of the dephasing time according to equation (10) is consistent
with the evaluation of the total transition rate, τ−1

φ = ∑
nn′ Wnn′, as calculated in equation (5).

Also it is compatible with the evaluation of the transition rates in BA according to equation (1)
if we follow the approximation discussed in the last section. We conclude that the calculation
of the dephasing time τφ and the rate of collisions with the medium are compatible in the BA,
leading to identical results.

This relation shows, however, that equation (10) is of restricted validity. It applies to
the limit of weak coupling of the system and the bath that is appropriate as long as the BA
gives the correct transition rates. But, on the other hand, we saw in figure 1 that strong
collisions significantly modify the rates obtained in the BA. It is evident that in this case also
equation (10) becomes questionable. The same holds for the LRT approach of section 3. As is
well known from the theory of spectral line-shapes, for strong collisions the result of the BA
will be reduced, as can be done using a cut-off procedure [29] or more sophisticated approaches
treating the atomic self-energy in T-matrix approximation [30]. Therefore equation (10) has
to be improved, if strong collisions become of importance.

A possible solution of this problem being present, if the Rydberg atom is strongly coupled
to the plasma, is achieved going beyond the BA. In particular, the perturbing charged particle
(within the Weisskopf radius [29] separating strong scattering processes) can be included
into the system under consideration, which corresponds to the full solution (T-matrix) of the
three-particle system given by the Rydberg atom and the charged particles from the plasma.
With respect to low H lines, such an approach has been performed in the theory of spectral
line-broadening [30]. Incorporating the strongly perturbing charged particles into the system
S, equation (10) after this new decomposition of system and bath may become valid again.
Then, of course, the matrix elements based on the isolated atomic (H) states have to be replaced
by the corresponding matrix elements of the extended system consisting of the Rydberg atom
an the strongly coupled charge carriers.

5. Conclusion

Transitions to neighboured levels by collision with charged particles become the dominating
process for Rydberg atoms in an ultracold plasma at increasing charge carrier density. The
rates in the BA, that are valid for weak scattering, can be obtained on the basis of a kinetic as
well as a statistical way in the framework of LRT. They are consistent with the dephasing rate
following an approach of mesoscopic devices.

The restriction to weak collisions overestimates the scattering rates for the considered
transitions, if strong collisions play an important role. If we deduce from the scattering rate
the decoherence time according to the mesoscopic procedure ignoring strong collisions we
arrive for typical conditions at a dephasing time of 10–100 ns for a n = 13 level. If one applies
a renormalization factor as common for spectral linewidth, the dephasing time will increase
by a factor of about 50. Thus an improvement of expression (10) for the dephasing time is
necessary, which goes beyond the BA. This may be achieved including strong perturbers in the
definition of the reduced system, so that the original separation into a reduced system strongly
coupled to the bath is avoided.
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[28] Reinholz H, Redmer R, Röpke G and Wierling A 2000 Phys. Rev. E 62 5648
[29] Griem H R 1997 Principles of Plasma Spectroscopy (Cambridge: Cambridge University Press)
[30] Könies A and Günter S 1995 Phys. Rev. E 52 6658
[31] Joos E, Zeh H D, Kiefer C, Giulini D, Kupsch J and Stamatescu I-O 2003 Decoherence and the Appearrance

of a Classical World in Quantum Theory 2nd edn (Berlin: Springer)
[32] Wang T, Cote R, Eyler E, Farooqi S, Gould P, Kostrun M, Vrinceanu D and Yelin S F 2005 Preprint

quant-ph/0508135
[33] Fleischhauer M and Yelin S F 1999 Phys. Rev. A 59 2427

http://dx.doi.org/10.1088/0034-4885/61/2/002
http://dx.doi.org/10.1103/PhysRevLett.87.037901
http://dx.doi.org/10.1088/0953-4075/38/2/032
http://dx.doi.org/10.1103/PhysRevA.65.063404
http://www.arxiv.org/abs/physics$/$0504022
http://dx.doi.org/10.1103/PhysRevA.70.042703
http://dx.doi.org/10.1088/0741-3335/47/5A/021
http://dx.doi.org/10.1103/PhysRevLett.85.4466
http://dx.doi.org/10.1103/PhysRevLett.88.055002
http://dx.doi.org/10.1103/PhysRevLett.88.065003
http://dx.doi.org/10.1070/QE2001v031n12ABEH002111
http://dx.doi.org/10.1103/PhysRevA.70.033416
http://dx.doi.org/10.1016/j.nimb.2005.03.095
http://dx.doi.org/10.1111/j.1365-2966.2005.09245.x
http://dx.doi.org/10.1103/PhysRevA.41.3436
http://dx.doi.org/10.1016/0370-1573(95)00074-Q
http://dx.doi.org/10.1103/PhysRev.181.275
http://dx.doi.org/10.1103/PhysRevA.40.1133
http://dx.doi.org/10.1103/PhysRevE.62.5648
http://dx.doi.org/10.1103/PhysRevE.52.6658
http://www.arxiv.org/abs/quant-ph$/$0508135
http://dx.doi.org/10.1103/PhysRevA.59.2427

	1. Introduction
	2. Electron scattering at Rydberg atoms
	3. Many-particle picture of bath scattering
	4. Dephasing rate and life time
	5. Conclusion
	Acknowledgment
	References

